Increase of total alkalinity due to shoaling of aragonite saturation horizon in the Pacific and Indian Oceans: Influence of anthropogenic carbon inputs
نویسندگان
چکیده
[1] Aragonite saturation horizon (ASH) shallowed significantly by 25 to 155 m and 16 to 124 m in the Pacific and Indian Ocean respectively in two decades. Apparent oxygen utilization (AOU) increased by 3 to 34 and 0.5 to 31.5 mmol kg 1 in the Pacific and Indian Ocean respectively at the depth of ASH during this period. DIC increased by 12.5 to 36.8 and 5.5 to 32 mmol kg 1 in the vicinity of ASH in the Pacific and Indian Ocean respectively due to combined effect of increased anthropogenic CO2 and change in AOU. TA increased significantly by 5 to 10 and 4 to 9.2 mmol kg 1 in the Pacific and Indian Oceans respectively at the ASH most likely as a result of aragonite dissolution. The upward migration of ASH solely due to anthropogenic CO2 amounted to 6 to 58 m in the Pacific and 4 to 44 m in the Indian Ocean.
منابع مشابه
Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean
[1] Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr 1 in the saturation state of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite saturation horizons, averaging about 1 to 2 m yr , a...
متن کاملIn situ calcium carbonate dissolution in the Pacific Ocean
[1] Over the past several years researchers have been working to synthesize the WOCE/ JGOFS global CO2 survey data to better understand carbon cycling processes in the oceans. The Pacific Ocean data set has over 35,000 sample locations with at least two carbon parameters, oxygen, nutrients, CFC tracers, and hydrographic parameters. In this paper we estimate the in situ CaCO3 dissolution rates i...
متن کاملImpact of anthropogenic CO2 on the CaCO3 system in the oceans.
Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also dis...
متن کاملInorganic carbon in the Indian Ocean: Distribution and dissolution processes
[1] This study uses nearly 25,000 carbon measurements from the WOCE/JGOFS global CO2 survey to examine the distribution of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the Indian Ocean. Shallow and intermediate distributions of inorganic carbon do not strictly follow temperature and salinity because of differing surface gradients and vertical biological processes that work to m...
متن کاملCarbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008
Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either...
متن کامل